

Structure and Stereochemistry of the First Isoflavanone-benzofuranone Biflavonoids

Riaan Bekker, E. Vincent Brandt* and Dancel Ferreira*

Department of Chemistry, University of the Orange Free State, P.O. Box 339, Bloemfontein 3900, South Africa

Received 11 June 1998; accepted 23 June 1998

Abstract: The structure and stereochemistry of (2S,3R)-dihydrogenistein-(2α→5)-(2R)-maesopsin and its 2S (F-ring) epimer from the heartwood of *Berchemia zeyheri*, representing the first isoflavanone-benzofuranone biflavonoids, were established by ¹H NMR and CD data. © 1998 Elsevier Science Ltd. All rights reserved.

Our first reports^{1,2} on the 2-benzylbenzofuranoid-type (maesopsin) constituents of the red heartwood of *Berchemia zeyheri* revealed the presence of the first flavanone-benzofuranoid oligomers (*zeyherins*).³ Definition of the structure and stereochemistry of these were permitted by the collective utilization of chemical degradation, ¹H NMR and CD spectrometry in conjunction with computational data.^{1,2} Here we report the identification of (2S,3R)-dihydrogenistein- $(2\beta \rightarrow 5)$ -(2R)-maesopsin 1 and its 2S(F)-epimer 3, representing the first natural isoflavanone-benzofuranoid biflavonoids.

The aq. acetone (4:1) extract of the heartwood of B. zeyheri was fractionated by repetitive countercurrent distribution in H₂O/sec-BuOH/n-hexane (5:3.5:1.5, 20 transfers) and in H₂O/sec-BuOH/n-hexane (5:4:1, 103 transfers) followed by column chromatography on Sephadex LH-20 in EtOH. Owing to the complexity of the resulting fractions and having established the absence of natural methoxy groups by

¹H NMR, the polyphenols 1 and 3 were isolated and identified as their permethylaryl ethers 2 and 4, following methylation with dimethylsulphate under anhydrous conditions, the additional chromatographic step offered by derivatization being a prerequisite for sample purity.

The close structural relationships between the derivatives 2 and 4 and the permethylaryl ethers of the zeyherin epimers^{1,2} were evident from the close resemblance of their ¹H NMR data (Table), supported by COSY and NOESY data. The spectra of both epimers 2 and 4 exhibit an AM-spinsystem associated with H-2 (δ 5.61, 5.62 for 2 and 4, resp.) and H-3 (δ 4.66, 4.62 for 2 and 4, resp.; $J_{2,3-trans} = 10.5$ Hz for both 2 and 4) of the heterocyclic C-rings and the shielded 2(F)-OMe (δ 3.24, 3.19 for 2 and 4, resp.) and the α -methylene (δ 3.13, 3.05 and 3.19, 3.06 for 2 and 4, resp., $J_{AB} = 14.0$ Hz) resonances reminiscent of the benzofuranoid moieties. The B- and E-ring protons, appearing as two AA'BB' spin systems, were common to both derivatives while the A- and D-ring protons resonated respectively as an AB-spin system ($J_{AB} = 2.0$ Hz for both 2 and 4) and a residual singlet (δ 5.93, 5.95 for 2 and 4, resp.). NOE-association of the latter protons with only one methoxy group [6-OMe(D)] define these compounds as 5(D)-linked dimers.

Table: ¹H NMR data for the Isoflavanone-benzoofuranoid biflavonoids 2 and 4 [δ (m, J in Hz)].

Ring	Н	2	4
A	6*	5.99 (d,2.0)	6.05 (d,2.0)
	8*	5.98 (d,2.0)	6.00 (d,2.0)
В	2/6	7.32 (d,8.5)	7.38 (d,8.5)
	3/5	6.84 (d,8.5)	6.82 (d,8.5)
С	2	5.61 (d,10.5)	5.62 (d,10.5)
	3	4.66 (d,10.5)	4.62 (d,10.5)
D	7	5.93 (s)	5.95 (s)
Е	2/6	7.01 (d,8.5)	7.15 (d,8.5)
	3/5	6.65 (d,8.5)	6.62 (d,8.5)
F	-CH ₂ -	3.13,3.05 (both d, both 10.5)	3.19,3.06 (both d, both 14.0)
	2(F)-OMe	3.24(s)	3.19(s)
	OMe	3.89,3.87,3.86,3.79,3.78,3.73, each s	3.92,3.88(x2),3.82,3.79, 3.71,each s

^{*} May be interchanged.

Long-range COSY- and NOESY-experiments permitted definition of compounds based on a 3-substituted flavanone by association of H-2 and -6(B) with H-2(C), as displayed by the $3\alpha(C) \rightarrow 7(D)$ -linked

zeyherins^{1,2}. This contrasts notably with the analogues 2 and 4 where coupling of H-2 and -6(B) occurs with H-3(C), indicative of $2\alpha(C) \rightarrow 5(D)$ -linked oligomers based on a 2α -substituted isoflavanone moiety.

High-amplitude positive and negative Cotton effects for the $n \to \pi^*$ transition in the 350-370 nm region of the CD spectra (Figure) of derivatives 2 and 4, respectively, are in accord with 2R(F) and 2S(F) absolute configuration^{1,2} for the maesopsin moieties, thus illustrating their epimeric relationship. Isoflavanones display Cotton effects for their $n \to \pi^*$ transitions in the same region of their CD curves.^{4,5}

Figure CD spectra of isoflavanone-benzofuranoid biflavonoid derivatives 2 and 4.

Thus, the positive effect at these wavelengths in the spectrum of 2 is reminiscent of 3R configuration, its high amplitude being the result of the cumulative effects of chirality at this centre as well as that at C-2(F). The much reduced negative Cotton effect for derivative 4 similarly reflects 3R configuration, the effects due to C-3(C) and C-2(F) now opposing each other. Compounds 2 and 4 additionally exhibit negative and positive Cotton effects in the 310-330 nm regions of their CD spectra. When taken in conjunction with the coupling constants of the protons of the heterocyclic C-ring ($^3J_{2,3} = 10.5$ Hz) indicating a 2,3-trans configuration for both 2 and 4, the absolute configuration of these novel biflavanoid derivatives may be assigned as 2R,3S(C): 2R(F) for 2 and 2R,3S(C): 2S(F) for 4.

Biogenetically, the novel biflavonoids 1 and 3 presumably originate via 2,3-phenyl migration of the (2R) 4',5,7-trihydroxyflavanone 5 (naringerin) which coexists in B. zeyheri. Irrespective of the particular mechanism involved, i.e. ionic or radical, ⁶⁻⁸ such a migration proceeds in a suprafacial mode thus leading to an isoflavanone intermediate with a 3 β aryl group and a C-2 electron deficient centre. The less hindered α -face of the electrophilic C-2 centre in such an intermediate is then prone to nucleophilic attack by the phloroglucinol-type D-ring of maesopsin 6. Since the latter coexists as the racemate in B. zeyheri^{1,2} the two epimers 5 and 6 originate.

ACKNOWLEDGEMENTS

Support by the Foundation for Research Development, Pretoria and the Sentrale Navorsingsfonds of this University is gratefully acknowledged.

REFERENCES AND NOTES

- 1. Bekker, R.; Brandt, E.V.; Ferreira, D. J. Chem. Soc., Chem. Commun., 1996, 957.
- 2. Bekker, R.; Brandt, E.V.; Ferreira, D. J. Chem. Soc., Perkin Trans. 1, 1996, 2535.
- 3. Volsteedt, F. du R.; Roux, D.G. Tetrahedron Lett., 1991, 1647.
- 4. Kurosawa, K.; Ollis, W.D.; Redman, B.T.; Sutherland, I.O.; Alves, H.M.; Gottlieb, O.R. *Phytochemistry*, 1978, 17, 1423.
- 5. Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Chem. Pharm. Bull., 1988, 36, 2090.
- 6. Hashim, M.F.; Hakamatsuka, T.; Ebizuka, Y.; Sankawa, U. FEBS Lett., 1990, 271,219.
- 7. Kochs, G.; Grisebach, H. Eur. J. Biochem., 1986, 155, 311.
- 8. Crombie, L.; Holden, I.; Van Bruggen, N.; Whiting, D.A. J. Chem. Soc., Chem. Commun., 1986, 1063.